Минобрнауки России

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

(ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

Заведующий кафедрой

Сургалин Сергей Дмитриевич

Кафедра цифровых технологий

28.02.2022

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б1.О.32 Квантовая теория

1. Код и наименование направления подготовки/специальности:

09.03.02 Информационные системы и технологии

2. Профиль подготовки/специализация:

Встраиваемые вычислительные системы и интернет вещей, Информационные системы в телекоммуникациях, Информационные системы и сетевые технологии, Информационные системы и технологии в управлении предприятием, Обработка информации и машинное обучение, Программная инженерия в информационных системах, Информационные технологии в цифровом дизайне

3. Квалификация (степень) выпускника:

Бакалавриат

4. Форма обучения:

Очная

5. Кафедра, отвечающая за реализацию дисциплины:

Кафедра цифровых технологий

6. Составители программы:

Запрягаев Сергей Александрович, д. ф.-м. н., профессор

- 7. Рекомендована: протокол НМС №3 от 25.02.2022
- 8. Учебный год:

2024-2025

9. Цели и задачи учебной дисциплины:

Целью курса является ознакомление студентов с основными понятиями квантовой теории и ее математическим аппаратом.

Задачи учебной дисциплины: формирование умения использовать понятия и аппарат теории для исследования квантовых информационных систем, а также для решения простейших задач квантовой теории информации.

10. Место учебной дисциплины в структуре ООП:

Квантовая теория входит в цикл профессиональных дисциплин в обязательной части блока Б1. При изложении курса используются сведения из таких дисциплин, как "Алгебра и геометрия", "Математический анализ", "Механика и оптика", "Уравнения математической физики и специальные функции".

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки),соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников):

Код и название компетенции	Код и название индикатора компетенции	Знания, умения, навыки
ОПК-1 Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности;	ОПК-1.1 Знает основы математики, физики, вычислительной техники и программирования	Знать: теоретические основы нерелятивистской квантовой теории; способы применения уравнений квантовой теории. принципы применения квантовой идеологии в Информационных системах.
ОПК-1 Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности;	ОПК-1.2 Умеет решать стандартные профессиональные задачи с применением естественнонаучных и общеинженерных знаний, методов математического анализа и моделирования	Уметь: решать основные задачи квантовой теории, эффективно применять квантовую теорию при описании модельных элементарных квантовых систем.
ОПК-1 Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности;	ОПК-1.3 Имеет навыки теоретического и экспериментального исследования объектов профессиональной	Владеть: навыками применения математического аппарата квантовой теории.
ОПК-8 Способен применять математические модели, методы и средства проектирования информационных и автоматизированных систем.	ОПК-8.2 Умеет применять на практике математические модели, методы и средства проектирования и автоматизации системдеятельности	Уметь: решать основные задачи квантовой теории, эффективно применять квантовую теорию при описании модельных элементарных квантовых систем.

12. Объем дисциплины в зачетных единицах/час:

3/108

Форма промежуточной аттестации:

Экзамен

13. Виды учебной работы

Вид учебной работы	Семестр 6	Всего
Аудиторные занятия	48	48
Лекционные занятия	32	32
Практические занятия	16	16
Лабораторные занятия		0
Самостоятельная работа	24	24
Курсовая работа		0
Промежуточная аттестация	36	36
Часы на контроль	36	36
Всего	108	108

13.1. Содержание дисциплины

п/п	Наименование раздела дисциплины	Содержание раздела дисциплины	Реализация раздела дисциплины с помощью онлайн-курса, ЭУМК
1	Введение. Микромир. Дуализм. Понятие о квантовых информационных системах	Макро- и микромир. Волновые свойства материи. Квантовые компьютеры. Квантовые каналы связи. Кантовая криптография.	https://edu.vsu.ru/course/view.php?id=3978, https://edu.vsu.ru/course/view.php?id=4156

п/п		Содержание раздела	Реализация раздела дисциплины с помощью	
	Наименование раздела дисциплины	дисциплины	онлайн-курса, ЭУМК	

2	Основные постулаты квантовой теории	Состояние. Понятие квантового состояния. Оператор. Алгебра операторов. Принцип суперпозиции состояний. Соответствие операторов физическим величинам. Теоремы об эрмитовых операторах. Волновая функция. Уравнение Шредингера. Статистическая интерпретация волновой функции. Измерение в квантовой теории. Постулат об измерении. Принцип неопределенности для физических величин. Предельный переход от квантовой механики и классической.	https://edu.vsu.ru/course/view.php?id=3978, https://edu.vsu.ru/course/view.php?id=4156
3	Теория представлений квантовых состояний	Аксиоматическая квантовая механика. Дираковские обозначения квантовых состояний. Бра и кет — состояния. Теория представлений. Теория представлений для операторов. Оператор эволюции. Различные представления квантовой теории.	https://edu.vsu.ru/course/view.php?id=3978, https://edu.vsu.ru/course/view.php?id=4156
4	Одномерное уравнение Шредингера	Одномерное движение. Свободная частица. Модельное описание взаимодействий частиц. Туннельный эффект. Линейный гармонический осциллятор.	https://edu.vsu.ru/course/view.php?id=3978, https://edu.vsu.ru/course/view.php?id=4156
п/п	Наименование раздела дисциплины	Содержание раздела дисциплины	Реализация раздела дисциплины с помощью онлайн-курса, ЭУМК

5	Многомерное, много частичное уравнение Шредингера	Атом водорода. Многоэлектронные атомы. Уравнение Шредингера для системы многих частиц. Симметричные и антисимметричные состояния. Молекулы. Ядра.	https://edu.vsu.ru/course/view.php?id=3978, https://edu.vsu.ru/course/view.php?id=4156
6	Спин частиц. Математический аппарат теории спина	Опыты Штерна-Герлаха. Спин электрона. Спин частиц. Матрицы Паули. Алгебра матриц Паули.	https://edu.vsu.ru/course/view.php?id=3978, https://edu.vsu.ru/course/view.php?id=4156
7	Квантовая теория переходов	Нестационарная теория возмущений. Вероятность перехода в единицу времени. Золотое правило Ферми. Теория рассеяния. Борновское приближение в рассеянии.	https://edu.vsu.ru/course/view.php?id=3978, https://edu.vsu.ru/course/view.php?id=4156
8	Кубит. Квантовые информационные системы	Кубит. Принципы реализации кубита. Спутанные состояния. Состояния Белла. Принципы работы квантовых компьютеров. Общие принципы квантовой криптографии. Понятие о телепортации. Заключение.	https://edu.vsu.ru/course/view.php?id=3978, https://edu.vsu.ru/course/view.php?id=4156

13.2. Темы (разделы) дисциплины и виды занятий

Nº π/π	Наименование темы (раздела)	Лекционные занятия	Практические занятия	Лабораторные занятия	Самостоятельная работа	Всего
1	Введение. Микромир. Дуализм. Понятие о квантовых информационных системах	4	2		4	10

2	Основные постулаты квантовой теории	4	2		4	10
3	Теория представлений квантовых состояний	4	2		4	10
4	Одномерное уравнение Шредингера	4	2		2	8
5	Многомерное, много частичное уравнение Шредингера	4	2		2	8
6	Спин частиц. Математический аппарат теории спина	4	2		2	8
7	Квантовая теория переходов	4	2		2	8
8	Кубит. Квантовые информационные системы	4	2		4	10
		32	16	0	24	72

14. Методические указания для обучающихся по освоению дисциплины

Освоение дисциплины складывается из аудиторной работы (учебной деятельности, выполняемой под руководством преподавателя) и внеаудиторной работы (учебной деятельности, реализуемой обучающимся самостоятельно).

Аудиторная работа состоит из выполнения практических и лабораторных заданий в объёме, предусмотренном учебным планом.

Самостоятельная работа предполагает углублённое изучение отдельных разделов дисциплины с использованием литературы, рекомендованной преподавателем, а также конспектов практических (лабораторных) занятий. В качестве плана для самостоятельной работы может быть использован раздел 13.1 настоящей рабочей программы, в котором зафиксированы разделы дисциплины и их содержание. В разделе 13.2 рабочей программы определяется количество часов, отводимое на самостоятельную работу по каждому разделу дисциплины. Большее количество часов на самостоятельную работу отводится на наиболеетрудные е трудныеразделы дисциплины. Для самостоятельного изучения отдельных разделов дисциплины используется перечень литературы и других ресурсов, перечисленных в пунктах 15 и 16 настоящей рабочей программы.

Успешность освоения дисциплины определяется систематичностью и глубиной аудиторной и внеаудиторной работы обучающегося.

При использовандистанционни образовательныхых технологийи электронн обучения го

выполнять все указания преподавателей, вовремя подключаться к online занятиям, ответственно подходить к заданиям для самостоятельной работы.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимыхдля освоения дисциплины

Nº п/п	Источник
1	Савельев, И. В. Основы теоретической физики. Т. 2: Квантовая механика : учебник. Т. 2 / Савельев И. В. — 5-е изд., стер. — 2018 .— 432 с. — <url: 104957="" book="" e.lanbook.com="" https:=""></url:>
2	Савельев, И. В. Курс физики. Т. 3: Квантовая оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц: учебное пособие. Т. 3 / Савельев И. В. — 7-е изд., стер. — 2019. — 308 с. — <url: 117716="" book="" e.lanbook.com="" https:=""></url:>

б) дополнительная литература:

Nº π/π	Источник
1	Ефремов, Ю. С. Квантовая механика : учебное пособие / Ю. С. Ефремов .— Москва, Берлин : Директ- Медиа, 2015 .— 457 с. — <url: biblioclub.ru="" http:="" index.php?page="book&id=273446"></url:>
2	Запрягаев, С. А. Введение в квантовые информационные системы : учебное пособие / С. А. Запрягаев. — Воронеж : Издательский дом ВГУ, 2015 .— 218 с.
3	Ландау, Л. Д. Теоретическая физика : учеб. пособие для студентов физических специальностей университетов : в 10 т. / Л. Д. Ландау, Е. М. Лифшиц; под ред. Л.П. Питаевского М. : Наука, 2002 Т. 3: Квантовая механика. Нерелятивистская теория. — 803 с.
Nº п/п	Источник
4	Мултановский, В. В. Квантовая механика: учеб. пособие для студентов пед. и техн. вузов, обучающихся по направлениям подготовки и специальностям в обл. физики и естественнонаучного образования / В. В. Мултановский, А. С. Василевский. — 2-е изд., перераб. — М.: Дрофа, 2007. — 399 с.

в) информационные электронно-образовательные ресурсы:

№ п/п	Источник
1	Электронная библиотека BГУ https://lib.vsu.ru
2	Электронный университет ВГУ https://edu.vsu.ru
3	ЭБС «Лань» https://e.lanbook.com/

4	«Университетская библиотека online» https://biblioclub.ru/
5	«Консультант студента» http://www.studmedlib.ru/
6	«РУКОНТ» (ИТС Контекстум) https://lib.rucont.ru/

16. Перечень учебно-методического обеспечения для самостоятельной работы

Nº п/п	Источник
1	Запрягаев, С. А. Введение в квантовые информационные системы : учебное пособие / С. А. Запрягаев. — Воронеж : Издательский дом ВГУ, 2015 .— 218 с.
2	Савельев, И. В. Основы теоретической физики. Т. 2: Квантовая механика : учебник. Т. 2 / Савельев И. В. — 5-е изд., стер. — 2018 .— 432 с. — <url: 104957="" book="" e.lanbook.com="" https:=""></url:>
3	Савельев, И. В. Курс физики. Т. 3: Квантовая оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц: учебное пособие. Т. 3 / Савельев И. В. — 7-е изд., стер. — 2019. — 308 с. — <url: 117716="" book="" e.lanbook.com="" https:=""></url:>

17. Информационные технологии, используемые для реализации учебной дисциплины, включая программное обеспечение и информационно-справочные системы (при необходимости):

При реализации дисциплины могут использоваться технологии электронного обучения и дистанционные образовательные технологии на базе портала edu.vsu.ru, а также другие доступные ресурсы сети Интернет.

18. Материально-техническое обеспечение дисциплины:

Лекционная аудитория, оснащенная мультимедийным проектором; специализированная мебель: доска меловая или маркерная 1 шт., столы, стулья в необходимом количестве. ОС Windows v.7, 8, 10, набор утилит (архиваторы, файл-менеджеры), LibreOffice v.5-7, Foxit PDF Reader.

19. Оценочные средства для проведения текущей и промежуточной аттестаций

Порядок оценки освоения обучающимися учебного материала определяется содержанием следующих разделов дисциплины:

N <u>∘</u> π/π	Разделы дисциплины (модули)	Код компетенции	Код индикатора	Оценочные средства для текущей аттестации
1	Разделы 1-8	ОПК-1	ОПК-1.1	Письменный опрос
2	Разделы 2-8	ОПК-1	ОПК-1.2	Письменный опрос
3	Разделы 2-8	ОПК-1	ОПК-1.3	Письменный опрос
4	Разделы 2-8	ОПК-8	ОПК-8.2	Письменный опрос

Промежуточная аттестация

Форма контроля - Экзамен

Оценочные средства для промежуточной аттестации

Комплект КИМ

20 Типовые оценочные средства и методические материалы, определяющие процедурыоценивания

20.1 Текущий контроль успеваемости

Контроль успеваемости по дисциплине осуществляется с помощью следующих оценочных средств: письменный опрос.

Перечень вопросов к экзамену и для проведения письменных опросов:

- 1. Макро- и микромир. Волновые свойства материи.
- 2. Квантовые компьютеры.
- 3. Квантовые каналы связи.
- 4. Квантовая криптография.
- 5. Состояние. Понятие квантового состояния.
- 6. Оператор. Алгебра операторов.
- 7. Принцип суперпозиции состояний.
- 8. Соответствие операторов физическим величинам.
- 9. Теоремы об эрмитовых операторах.
- 10. Волновая функция.
- 11. Уравнение Шредингера.
- 12. Статистическая интерпретация волновой функции. Измерение в квантовой теории. Постулат об измерении.
- 13. Принцип неопределенности для физических величин.
- 14. Предельный переход от квантовой механики и классической.
- 15. Аксиоматическая квантовая механика.
- 16. Дираковские обозначения квантовых состояний.
- 17. Бра и кет состояния. Теория представлений.
- 18. Теория представлений для операторов.
- 19. Оператор эволюции. Различные представления квантовой теории.
- 20. Одномерное движение. Свободная частица.
- 21. Модельное описание взаимодействий частиц.
- 22. Туннельный эффект. Линейный гармонический осциллятор.
- 23. Атом водорода. Многоэлектронные атомы.
- 24. Уравнение Шредингера для системы многих частиц.
- 25. Симметричные и антисимметричные состояния.
- 26. Молекулы. Ядра.
- 27. Опыты Штерна Герлаха. Спин электрона.
- 28. Спин частиц. Матрицы Паули.
- 29. Алгебра матриц Паули
- 30. Нестационарная теория возмущений.
- 31. Вероятность перехода в единицу времени.
- 32. Золотое правило Ферми.
- 33. Теория рассеяния.
- 34. Борновское приближение в рассеянии
- 35. Кубит. Принципы реализации кубита.
- 36. Спутанные состояния. Состояния Белла.
- 37. Принципы работы квантовых компьютеров.
- 38. Общие принципы квантовой криптографии.
- 39. Понятие о телепортации.

Описание технологии проведения: обучающемуся случайным образов дается два вопроса из перечня, приведенного выше. На выполнение заданий дается 2 академических часа.

Требования к выполнению заданий (или шкалы и критерии оценивания): за верный и полный ответ на каждый вопрос выставляется оценка 25 баллов. При наличии ошибок и недочетов, оценка снижается. Если учащийся допускает грубые ошибки, демонстрируя тем самым непонимание сути проблемы и незнание базового материала, то ставится оценка 0 баллов.

20.2 Промежуточная аттестация

Промежуточная аттестация по дисциплине осуществляется с помощью следующих оценочных средств: комплект КИМ.

Перечень вопросов приведен выше.

Примеры типовых контрольно-измерительных материалов:

Контрольно-измерительный материал № 1

- 1. Уравнение Шредингера.
- 2. Кубит. Принципы реализации кубита.

Контрольно-измерительный материал № 2

- 1. Теоремы об эрмитовых операторах.
- 2. Золотое правило Ферми.

Описание технологии проведения: обучающемуся случайным образом дается один из экзаменационных билетов. Затем на подготовку предоставляется 3 академических часа. За отведенное время обучающийся должен письменно выполнить задания билета. После этого проводится собеседование, в ходе которого могут быть заданы уточняющие и дополнительные вопросы. При успешном ответе на дополнительные вопросы обучающийся может получить от 0 до 10 дополнительных баллов.

Требования к выполнению заданий, шкалы и критерии оценивания. Максимальная оценка за каждое задание - 25 баллов. Для оценивания результатов обучения на экзамене используются следующие показатели:

- 1) знание основных понятий квантовой теории и ее методов, которые используются для построения моделей и конструирования алгоритмов решения практических задач;
- 2) знание постановки классических задач;
- 3) знание методов формулировки и доказательства математических утверждений;
- 4) умение применять методыквантовой теориидля решения задач профессиональной деятельности;
- 5) умение применять аппарат квантовой теории для доказательства утверждений и теорем;
- 6) владение навыками квалифицированного выбора и адаптации существующих методов длярешения практических задач;
- 7) владение навыками использования методов решения классических задач квантовой теории для решения различных естественнонаучных задач.

Для оценивания результатов обучения на экзамене используется 4-балльная шкала: «отлично», «хорошо», «удовлетворительно», «неудовлетворительно»

Критерии оценивания	Шкала оценок
Средний балл по результатам текущих аттестаций в сумме с оценкой за экзаменационную работу и дополнительными баллами лежит в диапазоне 90–100.	Отлично
Средний балл по результатам текущих аттестаций в сумме с оценкой за экзаменационную работу и дополнительными баллами лежит в диапазоне 70–89.	Хорошо
Средний балл по результатам текущих аттестаций в сумме с оценкой за экзаменационную работу и дополнительными баллами лежит в диапазоне 50–69.	Удовлетворительно
Средний балл по результатам текущих аттестаций в сумме с оценкой за экзаменационную работу и дополнительными баллами меньше 50.	Неудовлетворительно